Anhydrous ammonia for vegetable crops
Could it be a viable proposition?

Summary
Anhydrous ammonia has long been used as a pre-plant and side dressing fertiliser in the cotton and grain industries. It results in a high retention of nitrogen in the soil, reduced leaching of nitrates through the soil and yield increases in various crops. However, it needs to be treated with care as it can cause injury to farm workers. Anhydrous ammonia has beneficial effects on soil microbes, nitrifying bacteria and worms. Anhydrous ammonia is more suited to row crops rather than babyleaf crops, where even distribution nitrogen in the soil is required. Anhydrous ammonia should be applied with caution as misplacement can cause high nitrous oxide emissions and damage to seeds and growing plants.

What is anhydrous ammonia?
Anhydrous ammonia is the most concentrated form of nitrogen (N) fertiliser, containing a massive 82% available N.

Ammonia, which is normally a gas, can be converted into a liquid under high pressure, making it easier to transport and apply to the soil.

Once injected into the soil, anhydrous ammonia reacts with water in the soil to produce ammonium, which can either be held in the soil, or converted to nitrate for uptake by the plant roots.

Anhydrous ammonia is supplied in Australia by Incitec-Pivot Fertilisers, predominantly to the cotton and grain industries, and supply locations are focused around the areas these crops are produced.

Anhydrous ammonia can have beneficial effects on soil microbes, nitrifying bacteria and worms. It can also increase N retention in the soil, reducing nitrate leaching, resulting in yield and nitrogen-use-efficiency benefits.

Anhydrous ammonia in vegetable crops – what do we know?
Incorporating anhydrous ammonia into vegetable cropping systems can provide a range of benefits to producers such as increased soil health, reduced cost, increased yield and reduced environmental impact from a reduction in nitrate leaching.

In New Zealand, urea, sulphate of ammonia and anhydrous ammonia were applied to lettuce, radish and baby spinach and the respective yields assessed. Anhydrous ammonia compared favourably with other forms of N for all crops. Anhydrous ammonia produced significantly higher radish dry weight, compared to urea and the control. When anhydrous ammonia was applied in low temperature months of June and July, yields were significantly higher than all other treatments as anhydrous ammonia stimulated plant growth and increased recovery of nitrogen from soil.

Anhydrous ammonia is effective in row crops such as potatoes, sugar beets, and cabbage. For example, in cabbage, 200kg/ha of anhydrous ammonia produced a significantly higher yield of first grade cabbage heads compared to 200kg/ha of calcium nitrate.

In potatoes, a review of 22 experiments in the Netherlands, using anhydrous ammonia, found that yield increases were observed in nearly all the trials. Anhydrous ammonia increased yield compared to solid fertilisers by an average of 3.1 t/ha over 20 trials, with increases of up to 5.9 t/ha over standard practice.

Anhydrous ammonia for vegetable crops

Anhydrous ammonia has also been more effective than calcium ammonium nitrate in potato production due to the slow release of available N in wet winters. Highest yields occurred when injected 1–3 weeks before planting or sowing.

In sugar beet, yields were on average 7.4 t/ha higher with anhydrous ammonia compared to urea and urea-ammonium nitrate (Table 2). During high precipitation (260mm) after application, urea yielded 11.2t/ha less than anhydrous ammonia due to leaching of nitrate from the soil.

In cabbage, tomatoes and beans anhydrous ammonia proved as effective as ammonium nitrate and sodium nitrate and superior for beans. In tomatoes, a split application at 15cm gave significantly greater yields than a single application at the same depth.

Residual nitrogen

Another advantage of the use of anhydrous ammonia is the residual N in the soil that becomes available for the subsequent crop. In a six-year trial on potatoes, sugar beets and maize – comparing anhydrous ammonia and calcium nitrate – it was found that high residual N after application of anhydrous ammonia resulted in increases in yield to the following winter wheat.

Anhydrous ammonia has also been used to suppress root-knot nematode. The addition of anhydrous ammonia to olive pomace reduced the C:N ratio of soil (increased N content), reduced phytotoxicity to tomato plants, suppressed nematodes and increased microbial activity of the soil. This was advantageous over the traditional use of urea as urea’s high solubility meant that it leached out of the soil.

Table 1 - Comparison of form of nitrogen and method of application on yield of sugar beet in North Dakota, USA.

<table>
<thead>
<tr>
<th>NITROGEN SOURCE</th>
<th>METHOD OF APPLICATION</th>
<th>ROOT YIELD (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of 4 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>Surface</td>
<td>43.9</td>
</tr>
<tr>
<td>Urea-ammonium nitrate</td>
<td>Surface</td>
<td>+2.2</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>Surface</td>
<td>+4.0</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Injected</td>
<td>+7.4</td>
</tr>
<tr>
<td>Average of 2 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>Surface</td>
<td>48.6</td>
</tr>
<tr>
<td>Urea</td>
<td>Injected</td>
<td>+7.2</td>
</tr>
<tr>
<td>Urea-ammonium nitrate</td>
<td>Surface</td>
<td>+0.7</td>
</tr>
<tr>
<td>Urea-ammonium nitrate</td>
<td>Injected</td>
<td>+5.4</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Injected</td>
<td>+7.4</td>
</tr>
</tbody>
</table>

References:

6 Draycott, A.P. and D.R. Christenson, Nutrients for sugar beet production: Soil-plant relationships. 2003: CABI.
Other benefits of using anhydrous ammonia

Stability of nitrogen in the soil

After the anhydrous ammonia reacts with water in the soil to produce ammonium, the nitrogen is locked into the soil exchange complex and will not leach out of the soil with water. Nitrogen will only leach out of the root zone after nitrification, and is due to the process of soil microbes converting ammonium to nitrate. Once converted to nitrate, the nitrogen is readily available for uptake from plants.

Vegetable grower Ed Fagan (Mulyan Farms) found the main benefits of retention of N from anhydrous ammonia in vegetable crops are: (1) the nitrogen remains available to the crop until harvest (2); residual nitrogen moves down the soil profile slightly, but remains in the root zone (0-30cm). This residual N is then available for a subsequent crop because it is not lost to deep leaching or volatilisation.

Studies on corn in the USA in a sandy loam, found that using anhydrous ammonia to supply nitrogen reduced nitrate leaching by 56%, from 43 kg N/ha to 19kg N/ha, compared to urea-ammonium10.

Earthworms

When anhydrous is applied, initially, approximately 15% of the earthworm population is killed. However, anhydrous increases the amount of available nutrients, resulting in gradual increase in earthworms in the application zone. After this, numbers multiply quickly due to fertile conditions, 6-8 weeks after injection; the total numbers are normally higher than originally present11.

The increase in earthworm numbers is due to added N increasing biological activity resulting in enhanced earthworm growth and sexual activity. Increase in earthworm numbers has been shown to increase soil aggregation, improved soil structure, increased water infiltration, increased soil aeration, assist in plant residue decomposition and increase microbial mineralisation cycles12.

Table 2 - Earthworm numbers post anhydrous application per square metre11.

<table>
<thead>
<tr>
<th>AMMONIA APPLICATION RATE (KG/HA)</th>
<th>0</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthworms</td>
<td>98</td>
<td>292</td>
</tr>
<tr>
<td>Cocoons</td>
<td>62</td>
<td>98</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>390</td>
</tr>
</tbody>
</table>

Soil Microbes

Initially, a high concentration of ammonia and an increase in soil pH following application reduces microbial biomass carbon and protozoa by about half, while ammonia and nitrate bacteria are unchanged6. Five weeks later, microbial biomass and protozoa numbers recover, with a minimal impact in the long-term5.

When compared to urea application, anhydrous ammonia increases the microbial diversity for both bacteria and fungi in the soil.11 The microbial diversity in the soil is critical to the maintenance of the soil’s health and quality as a wide range of organisms are involved in important soil functions12 – important processes such as soil structure formation, decomposition of organic matter, toxin removal and cycling of carbon, nitrogen, phosphorus and sulphur, as well as playing a role in suppressing soil-borne plant diseases and promoting plant growth32.

Figure 2 - Anhydrous ammonia ‘BiG N’ application equipment using tines. Photo courtesy of Incitec-Pivot Fertiliser.

How do you apply anhydrous ammonia to vegetable cropping soils?

The effectiveness of anhydrous ammonia can vary dependent on soil type, moisture in the soil and climatic conditions. Moisture is not critical for the retention of ammonia in the soil as clay and organic matter provide long-term ammonia retention sites. High moisture content of the soil provides proper soil physical conditions to ensure rapid and complete sealing of the injection channel and a short-term reservoir of ammonia (initial capacity)\(^1\).

Soil texture is a major factor in the retention of ammonia; the highest retention being in fine textured clay soils, lowest in coarse sandy soils, while the greatest loss of ammonia is in dry sandy soils. However, if placement of ammonia is correct and the injection point is sufficiently covered with soil, anhydrous ammonia can be just as effective in dry, sandy soils. Theoretically, soil with high clay content and moisture are most suited for retention; in the field these soils can lose a high proportion of ammonia if the soil is cloddy and does not provide coverage of the injection furrow\(^1\).

Soil pH affects the ability of the soil to react chemically with ammonia. Under acidic conditions clay minerals are the most attractive sites, while under alkaline conditions organic matter is more effective\(^1\). Soil pH also influences the partitioning between NH\(_3\) and NH\(_4^+\). Following injection, NH\(_3\) reacts with water and releases hydroxyls that raise the pH of the soil in the retention zone.

The nitrification of NH\(_4^+\) on the other hand releases hydrogen ions, which reduces the pH levels to original levels or lower\(^1\). The pH of the soil at injection has been shown to influence retention percentage. At pH below 6, 92% of N injected into the soil was retained, while the pH above 7.5, only 64% was retained. This is because low pH favours ammonia conversion to ammonium. However, rate of nitrification was higher in soils with pH above 7.5- at low pH, N is more readily retained in the soil as ammonium, but at high pH, N is more readily converted to nitrate by bacteria\(^1\).

What equipment do you need?

The need for specialised equipment could be a limiting factor for the widespread adoption of anhydrous ammonia in vegetable cropping systems. Pressure vessels are needed for the storage and safe handling of the gas. These vessels require significant investment and need to be regularly inspected. Specialised application equipment is also needed.

Conventional application equipment applies anhydrous ammonia as a pressurised liquid, which converts to gas immediately upon application. This is due to a pressure drop, which results in 50% liquid and 50% vapour. This conversion to gaseous form means that ammonia can be lost to the atmosphere if the soil does not flow freely around the application time, limiting usefulness in minimum tillage operations or in cloddy beds.

In COLD FLO\(^\circ\) converters, ammonia is converted to gaseous phase and then chilled, resulting in about 85% converting back to liquid (Figure 1).

When COLD FLO\(^\circ\) is used, the higher liquid percentage allows for “greater residence time” as liquid ammonia, resulting in greater coverage by the soil, increased absorption by the soil and decreased losses to the atmosphere. With COLD FLO\(^\circ\) technology, Big N can be applied under a wider range of soil conditions.

Figure 3 - Comparison of COLD FLO and conventional application\(^8\).

What are the health risks associated with using anhydrous ammonia?

Ammonia is a caustic, toxic gas with powerful corrosive action on tissue. In a US study, 30% of all chemical burns admitted to hospital were a result of anhydrous ammonia. Ammonia exposure can lead to dangerous inhalation and third-degree burns to the body.

Ammonia is a pungent gas and can be detected at 53 mg/L. A concentration of 100 mg/L is tolerable for several hours; coughing and laryngospasm occurs at about 1700 mg/L and it can be fatal at 2500 mg/L. If exposure lasts for 30 minutes at 5000ppm, rapid respiratory arrest occurs. However, in most cases, ammonia can be detected before any injury occurs. Exposure should be treated immediately by removing contaminated clothes and washing the affected area in water for at least 20 minutes.

Farm workers need to be educated of the potential risks of anhydrous ammonia, treatments and how to properly use equipment. Farm operators should be familiar with and follow the BIG N® Farmer operational manual.

Other potential risks and issues associated with using anhydrous ammonia

Potential for crop damage

The placement of anhydrous ammonia is important to avoid toxicity to seeds and young plants. When fertilisers are placed close to seeds or plants, the osmotic pressure of the soil increases, which can cause injury to plants.

The “salt index” refers to the effect of a fertiliser compared to sodium nitrate, which has a rating of 100. Any material with a high salt index must be used with care. Anhydrous ammonia has a salt index of 47.1; this is relatively low compared to other common fertilisers such as calcium nitrate (52.5) and urea (75.4). However, careful placement of anhydrous ammonia is essential to ensure it is not phytotoxic to seed and young plants.

Cost

The initial cost of application and storage equipment is a barrier to adoption of anhydrous ammonia in the vegetable industry. Depending on the size, equipment can cost $20,000-30,000. On average, it cost $2000 per metre of BIG N equipment. Cost of anhydrous per tonne of N is near parity to urea, however it contains a much high % N concentration. As with any adoption of new technology, initial cost occur, long-term savings can occur on cost per unit of nitrogen.

Commercial availability

Anhydrous ammonia is available in Australia as “Big N” supplied solely by Incitec-Pivot Fertilisers. The main users of Big N are grain and cotton growers and therefore anhydrous ammonia is not available in all cropping districts. This means that only vegetable farms located close to grain and cotton growing regions are likely to have anhydrous ammonia available.
Anhydrous ammonia for vegetable crops

Nitrous oxide emissions

The emission of nitrous oxide is highly dependent on soil type, tillage regime, nitrogen source, placement, timing and rate. Application of anhydrous ammonia to soils has had varied results in relation to nitrous oxide (N₂O) emissions.

Anhydrous ammonia, ammonia sulphate, urea and calcium nitrate were compared on a wheat crop on silty clay loam. The areas where anhydrous ammonia was knife-injected pre-plant had higher N₂O emissions (2.08kg N/ha) compared with ammonium sulphate (1.31kg N/ha). However, these anhydrous ammonia treatments demonstrated the highest nitrogen use efficiency due to available ammonium in the root zone. Anhydrous ammonia applied as pre-plant fertiliser to corn crops on silty clay loam soils resulted in 2.45kg N/ha in nitrogen emissions. This is reduced by up to 65% by reducing the rate of application from 202kg/ha to 145Kg/ha.

N₂O is a greenhouse gas, being attributed to deleterious effects on global warming and destruction of the ozone. Environmental stewardship needs to be maintained, this can include only applying when weather and soil conditions are permitting, ensuring the injection channel is fully enclosed by soil. Hence, reducing emissions of N₂O.

The science: What actually happens to anhydrous ammonia when it is applied to soils?

When applied to soils, anhydrous ammonia is initially converted to ammonium, which can be held in the soil and resist leaching. Anhydrous ammonia combines with soil moisture to produce ammonium which can either be taken up by plants, or converted to nitrate.

The following reaction occurs:

\[
\text{Ammonia gas (NH₃) combines with water in the soil to produce ammonium nitrogen (NH₄⁺), plus hydroxide ions (OH⁻).}
\]

Anhydrous ammonia can be phytotoxic to vegetable crops inhibiting seed germination, as well as being toxic to growing plants. It is important, therefore, to know the distribution of crop roots to ensure that the fertiliser is placed at the point of greatest absorbance. The placement of anhydrous ammonia is dependent of the type of crop. For example, 7.5cm has been found to be optimal for babyleaf spinach and radish, while 15cm is optimal for potatoes, tomatoes and sugar beet. Careful placement of fertiliser is needed as placing Big N directly underneath the seed reduced germination.

How far does anhydrous ammonia spread in the soil?

This is called the retention zone. It is the soil which is immediately affected by application. The retention zone is about 5–7.5cm wide, depending on soil type. The soil in the retention zone undergoes drastic changes in chemical, biological, and physical soil properties. These include an increase of NH₄ and NH₄⁺ concentrations, pH increase to 9 or above, NO₂⁻ increases, lower population of soil microbes and solubilisation of soil organic matter. Following application, the ammonia is absorbed by the soil, which produces ammonia concentration and pH gradients. Nitrification begins at the outside edge of the ammonia band where the ammonia concentration and pH are favourable for nitrifying organisms. As the concentration of ammonia and pH decreases, the rate of nitrification increases towards to the centre of the application band until the ammonia is completely nitrified or a pH is low enough to be a limiting factor (Figure 2). Anhydrous ammonia can be phytotoxic to vegetable crops inhibiting seed germination, as well as being toxic to growing plants. It is important, therefore, to know the distribution of crop roots to ensure that the fertiliser is placed at the point of greatest absorbance. The placement of anhydrous ammonia is dependent on the type of crop. For example, 7.5cm has been found to be optimal for babyleaf spinach and radish, while 15cm is optimal for potatoes, tomatoes and sugar beet. Careful placement of fertiliser is needed as placing Big N directly underneath the seed reduced germination.